All-rounder injectable mortar WIT-VM 250
All-rounder chemical injection mortar WIT-VM 250
ANC-MORT-(WIT-VM250)-420ML
Register now and access more than 15,000 products
Two-component resin mortar, styrene-free vinyl ester
Individual fixing point, cracked and uncracked concrete, seismic performance category C1
W-VI-A anchor rod, W-VD-A anchor rod, standard threaded rod with acceptance test certificate 3.1
Individual fixing point for masonry (system with WIT-SH perforated sleeve):
WIT-SH perforated sleeve, WIT-AS anchor rod, WIT-IG internally threaded sleeve
Individual fixing point for masonry (system with SH perforated sleeve):
SH perforated sleeve, W-VI-A anchor rod, W-VI-IG internal thread anchor, standard threaded rod with acceptance test certificate 3.1
Post-installed rebar connection
- European Technical Assessment ETA-12/0164: Individual fixing point + cracked and uncracked concrete (W-VD-A anchor rod, standard threaded rod with acceptance test certificate 3.1), seismic performance category C1
- European Technical Assessment ETA-13/1040: Individual fixing point + masonry consisting of solid and perforated block, autoclaved aerated concrete (WIT-SH perforated sleeve, WIT-AS anchor rod, WIT-IG internally threaded sleeve, autoclaved aerated concrete only with WIT-SH 18x95 perforated sleeve)
- European Technical Assessment ETA-16/0757 and ETA-20/0854: Individual fixing point + masonry consisting of solid and perforated block, autoclaved aerated concrete (SH perforated sleeve, W-VI-A anchor rod, W-VI-IG internal thread anchor, threaded rod with acceptance test certificate 3.1, autoclaved aerated concrete only without perforated sleeve)
- European Technical Assessment ETA-12/0166: Post-installed rebar connection, 330 ml, 420 ml and 825 ml cartridges only
- EPD: Environmental product declaration in accordance with ISO 14025 and EN 15804+A2, EPD-AWU-20230406-CBA3
Drill holes with a rotary drill (without impact mechanism)
Clean the drill hole:
2x blow out/2x mechanical brush out/2x blow out
Cut anchor rod to length and mark the desired insertion depths
Insert perforated sleeve
Screw mixer onto cartridge
Discard the first section of mortar (until the mortar is uniformly coloured - approx. 10 cm)
Completely fill with composite mortar from end of perforated sleeve
Press in anchor rod up to the bottom of the sleeve while turning slightly
Load can be applied to the reinforcement bar after observing the curing time
Mount component; do not exceed maximum torque
Cut tubular film clip before use!
Screw mixer onto cartridge
Before use, dispense a bead of approx. 20 cm
Create the drill hole
Clean the drill hole:
Blow out 4x with compressed air/brush out 4x mechanically/blow out 4x with compressed air
Cut anchor rod to length and mark the desired insertion depths
Screw mixer onto cartridge
Discard the first section of mortar (until the mortar is uniformly coloured - approx. 10 cm)
Fill composite mortar from bottom of drill hole
Press in anchoring element up to drill hole base while turning slightly
Visual check of mortar volume, embedment depth mark
Load can be applied to the reinforcement bar after observing the curing time
Mount the component. Do not exceed the maximum torque
Cut tubular film clip before use!
Screw mixer onto cartridge
Before use, dispense a bead of approx. 20 cm
Drill the hole
Clean the drill hole:
Blow out 4x with oil-free compressed air (min. 6 bar)
Brush out 4x mechanically
Blow out 4x with oil-free compressed air (min. 6 bar) (d. <20 mm and d. < 10xds)
Blow out 4x with hand pump, brush out 4x mechanically, blow out 4x with hand pump
Place the embedment depth mark on the rod and check the drilling hole depth
Screw mixer onto cartridge
Discard the first section of mortar (until the mortar is uniformly coloured - approx. 10 cm)
Mount injection equipment, fill composite mortar from bottom of drill hole
Insert the reinforcement bar until it reaches the mark, turning slightly
Visual check of the mortar volume, observe maximum processing time
Load can be applied to the reinforcement bar after observing the curing time
Minimum curing times in concrete | |||
Temperature of base material | Processing time | Minimum curing time in dry concrete | Minimum curing time in wet concrete |
≥ -10 °C1) | 90 min | 24 h | 48 h |
≥ -5 °C2) | 90 min | 14 h | 28 h |
≥ 0 °C2) | 45 min | 7 h | 14 h |
≥ +5 °C2) | 25 min | 2 h | 4 h |
≥ +10 °C2) | 15 min | 80 min | 160 min |
≥ +20 °C2) | 6 min | 45 min | 90 min |
≥ +30 °C2) | 4 min | 25 min | 50 min |
≥ +35 °C2) | 2 min | 20 min | 40 min |
≥ +40 °C3) | 1.5 min | 15 min | 30 min |
1) Cartridge temperature: ≥ +15 °C 2) Cartridge temperature: +5 °C to +25 °C 3) Cartridge temperature: < 20 °C |
Minimum curing times in masonry | |||
Temperature of base material | Processing time | Minimum curing time in dry masonry | Minimum curing time in wet masonry |
-10 °C to -6 °C1) | 90 min | 24 h | 48 h |
-5 °C to -1 °C2) | 90 min | 14 h | 28 h |
0 °C to +4 °C2) | 45 min | 7 h | 14 h |
+5 °C to +9 °C2) | 25 min | 2 h | 4 h |
+10 °C to +19 °C2) | 15 min | 80 min | 160 min |
+20 °C to +24 °C2) | 6 min | 45 min | 90 min |
+25 °C to +29 °C2) | 4 min | 25 min | 50 min |
+30 °C to +40 °C3) | 2.5 min | 15 min | 30 min |
1) Cartridge temperature: ≥ +15 °C 2) Cartridge temperature: +5 °C to +25 °C 3) Cartridge temperature: < +20 °C |
- European Technical Assessment ETA-12/0164: Individual fixing point + cracked and uncracked concrete (W-VD-A anchor rod, standard threaded rod with acceptance test certificate 3.1), seismic performance category C1
- European Technical Assessment ETA-13/1040: Individual fixing point + masonry consisting of solid and perforated block, autoclaved aerated concrete (WIT-SH perforated sleeve, WIT-AS anchor rod, WIT-IG internally threaded sleeve, autoclaved aerated concrete only with WIT-SH 18x95 perforated sleeve)
- European Technical Assessment ETA-16/0757 and ETA-20/0854: Individual fixing point + masonry consisting of solid and perforated block, autoclaved aerated concrete (SH perforated sleeve, W-VI-A anchor rod, W-VI-IG internal thread anchor, threaded rod with acceptance test certificate 3.1, autoclaved aerated concrete only without perforated sleeve)
- European Technical Assessment ETA-12/0166: Post-installed rebar connection, 330 ml, 420 ml and 825 ml cartridges only
- EPD: Environmental product declaration in accordance with ISO 14025 and EN 15804+A2, EPD-AWU-20230406-CBA3
Datasheets(X)
- Anchoring in cracked and uncracked concrete, masonry consisting of solid and perforated brick, aerated concrete and for post-installed reinforcement rods.
- Suitable for attaching metal structures, metal profiles, wooden structures, brackets, grids, pipes, cable conduits etc.
A 330 ml and 420 ml cartridge can continue to be used until the best before date, by changing the mixer nozzle or resealing it with the end cap.
Type description | WIT-VM 250 |
Contents | 420 ml |
Included in delivery | Mortar cartridge 420 ml (coaxial) + 1 x mixer nozzle |
Suitable application gun | Battery-powered application gun 420ml, Application gun MULTI, Application gun WIT 420ml, Pneumatic application gun 420ml, EasyMax 420 ml, HandyMax 420 ml |
Min./max. processing temperature /conditions | -10 to 40 °C / temperature in the anchorage ground during processing and hardening |
Min./max. ambient temperature / Conditions | -40 to 120 °C / after completely curing process |
Temperature resistance, long-term temperatures max. | 72 °C |
Temperature resistance, short-term temperatures max. | 120 °C |
Shelf life from production/conditions | 18 Month / cool and dry storage area, 5°C to 25°C |
Approval | ETA-12/0164, ETA-13/1040, ETA-12/0166, ETA-16/0757, ETA-20/0854 |
Chemical basis | Vinylester, styrene free |
Colour | Grey |
1) Maximum long-term temperature 2) Maximum short-term temperature 3) The partial safety factors of the resistances regulated in the approval and ETAG 029 and a partial safety factor of the actions of γF = 1.4 have been taken into account. 4) If the characteristic spacing and edge distances are reduced, the admissible loads must also be reduced. The smallest possible spacing or edge distance is the minimum spacing smin or minimum edge distance cmin 5) For combinations of tensile and shear loads, bending moments or reduced edge distances and spacings, see the European Technical Assessment. If the masonry joints are not visible, the load capacity should be reduced by a factor of αj = 0.75. If the masonry joints are visible (e.g. on an unplastered wall) the following should be observed: 1. The load capacity may only be assessed when the masonry joint is filled with mortar. 2. If the masonry joints are not filled with mortar, the load capacity may only be assessed if the minimum edge distance cmin to the perpend joints has been adhered to. If this minimum edge distance cmin is not adhered to, the load capacity should be reduced by a factor of αj = 0.75. Documentation for brick removal must also be supplied in accordance with ETAG 029 Annex C. 6) The brick and hole geometry must be taken from the European Technical Assessment. 7) Nadm or Vadm applies for the edge distance ccr, clip value (Nadm) or (Vadm) applies for the minimum edge distance (cmin). |
Anchor size | Brick compressive strength [N/mm²] | Brick density [kg/dm³] | Brick format6) [mm] | Effective anchorage depth hef [mm] | Minimum member thickness hmin [mm] | Maximum installation torque Tinst,max [Nm] | Admissible tensile load3)4)5) (individual anchor without influence of the edge distance) Nadm [kN] | Admissible shear load3)4)5) (individual anchor without influence of the edge distance) Vadm [kN] | Char. spacing parallel to bed joint4) scr || [mm] | Char. spacing perpendicular to bed joint4) scr ⊥ [mm] | Minimum spacing 4) smin [mm] | Char. edge distance ccr [mm] | Minimum edge distance4) cmin [mm] |
Solid brick Mz-DF EN 771-1 | |||||||||||||
M8 Perforated sleeve 12x80 | 10 | 1,64 | 240 x 115 x 55 | 80 | 115 | 2 | 1.0 (0.43)7) | 1.0 (0.34)7) | 240 | 240 | 120 | 120 | (60)7) |
20 | 1,64 | 240 x 115 x 55 | 2 | 1.29 (0.71)7) | 1.43 (0.43)7) | ||||||||
28 | 1,64 | 240 x 115 x 55 | 2 | 1.57 (0.71)7) | 1.57 (0.57)7) | ||||||||
M8 Perforated sleeve 16x85 | 10 | 1,64 | 240 x 115 x 55 | 85 | 115 | 2 | 1.0 (0.43)7) | 1.0 (0.34)7) | 255 | 255 | 120 | 127,5 | (60)7) |
20 | 1,64 | 240 x 115 x 55 | 2 | 1.43 (0.71)7) | 1.43 (0.43)7) | ||||||||
28 | 1,64 | 240 x 115 x 55 | 2 | 1.71 (0.86)7) | 1.57 (0.57)7) | ||||||||
M8 Perforated sleeve 16x130 | 10 | 1,64 | 240 x 115 x 55 | 130 | 195 | 2 | 1.0 (0.43)7) | 1.0 (0.34)7) | 390 | 390 | 120 | 195 | (60)7) |
20 | 1,64 | 240 x 115 x 55 | 2 | 1.43 (0.71)7) | 1.43 (0.43)7) | ||||||||
28 | 1,64 | 240 x 115 x 55 | 2 | 1.71 (0.86)7) | 1.57 (0.57)7) | ||||||||
M10/IT M6 Perforated sleeve 16x85 | 10 | 1,64 | 240 x 115 x 55 | 85 | 115 | 2 | 1.0 (0.43)7) | 1.0 (0.43)7) | 255 | 255 | 120 | 127,5 | (60)7) |
20 | 1,64 | 240 x 115 x 55 | 2 | 1.43 (0.71)7) | 1.43 (0.43)7) | ||||||||
28 | 1,64 | 240 x 115 x 55 | 2 | 1.71 (0.86)7) | 1.57 (0.57)7) | ||||||||
M10 Perforated sleeve 16x130 | 10 | 1,64 | 240 x 115 x 55 | 130 | 195 | 2 | 1.0 (0.43)7) | 1.0 (0.43)7) | 390 | 390 | 120 | 195 | (60)7) |
20 | 1,64 | 240 x 115 x 55 | 2 | 1.43 (0.71)7) | 1.43 (0.43)7) | ||||||||
27 | 1,64 | 240 x 115 x 55 | 2 | 1.71 (0.86)7) | 1.57 (0.57)7) | ||||||||
M12/IT M8 Perforated sleeve 20x85 | 10 | 1,64 | 240 x 115 x 55 | 85 | 115 | 2 | 1.0 (0.43)7) | 1.0 (0.43)7) | 255 | 255 | 120 | 127,5 | (60)7) |
20 | 1,64 | 240 x 115 x 55 | 2 | 1.43 (0.71)7) | 1.43 (0.43)7) | ||||||||
27 | 1,64 | 240 x 115 x 55 | 2 | 1.71 (0.86)7) | 1.57 (0.57)7) | ||||||||
M12 Perforated sleeve 20x130 | 10 | 1,64 | 240 x 115 x 55 | 130 | 195 | 2 | 1.0 (0.43)7) | 1.0 (0.43)7) | 390 | 390 | 120 | 195 | (60)7) |
20 | 1,64 | 240 x 115 x 55 | 2 | 1.43 (0.71)7) | 1.43 (0.43)7) | ||||||||
27 | 1,64 | 240 x 115 x 55 | 2 | 1.71 (0.86)7) | 1.57 (0.57)7) | ||||||||
M12 Perforated sleeve 20x200 | 10 | 1,64 | 240 x 115 x 55 | 200 | 240 | 2 | 1.0 (0.43)7) | 1.0 (0.43)7) | 600 | 600 | 120 | 300 | (60)7) |
20 | 1,64 | 240 x 115 x 55 | 2 | 1.43 (0.71)7) | 1.43 (0.43)7) | ||||||||
27 | 1,64 | 240 x 115 x 55 | 2 | 1.71 (0.86)7) | 1.57 (0.57)7) | ||||||||
M16/IT M10 Perforated sleeve 20x85 | 10 | 1,64 | 240 x 115 x 55 | 85 | 115 | 2 | 1.0 (0.43)7) | 1.0 (0.43)7) | 255 | 255 | 120 | 127,5 | (60)7) |
20 | 1,64 | 240 x 115 x 55 | 2 | 1.43 (0.71)7) | 1.43 (0.43)7) | ||||||||
28 | 1,64 | 240 x 115 x 55 | 2 | 1.71 (0.86)7) | 1.57 (0.57)7) | ||||||||
M16 Perforated sleeve 20x130 | 10 | 1,64 | 240 x 115 x 55 | 130 | 195 | 2 | 1.0 (0.43)7) | 1.0 (0.43)7) | 390 | 390 | 120 | 195 | (60)7) |
20 | 1,64 | 240 x 115 x 55 | 2 | 1.43 (0.71)7) | 1.43 (0.43)7) | ||||||||
28 | 1,64 | 240 x 115 x 55 | 2 | 1.71 (0.86)7) | 1.57 (0.57)7) | ||||||||
M16 Perforated sleeve 20x200 | 10 | 1,64 | 240 x 115 x 55 | 200 | 240 | 2 | 1.0 (0.43)7) | 1.0 (0.43)7) | 600 | 600 | 120 | 300 | (60)7) |
20 | 1,64 | 240 x 115 x 55 | 2 | 1.43 (0.71)7) | 1.43 (0.43)7) | ||||||||
28 | 1,64 | 240 x 115 x 55 | 2 | 1.71 (0.86)7) | 1.57 (0.57)7) | ||||||||
Solid sand-lime block KS-NF EN 771-2 | |||||||||||||
M8 Perforated sleeve 12x80 | 10 | 2,0 | 240 x 115 x 71 | 80 | 115 | 2 | 1.0 (0.43)7) | 0.71 (0.43)7) | 240 | 240 | 120 | 120 | (60)7) |
20 | 1.43 (0.71)7) | 1.14 (0.71)7) | |||||||||||
27 | 1.71 (0.86)7) | 1.29 (0.71)7) | |||||||||||
M8 Perforated sleeve 16x85 | 10 | 85 | 115 | 0.86 (0.43)7) | 0.71 (0.43)7) | 255 | 255 | 120 | 127,5 | (60)7) | |||
20 | 1.29 (0.57)7) | 1.14 (0.71)7) | |||||||||||
27 | 1.43 (0.71)7) | 1.29 (0.71)7) | |||||||||||
M8 Perforated sleeve 16x130 | 10 | 130 | 195 | 0.86 (0.43)7) | 0.71 (0.43)7) | 390 | 390 | 120 | 195 | (60)7) | |||
20 | 1.29 (0.57)7) | 1.14 (0.71)7) | |||||||||||
27 | 1.43 (0.71)7) | 1.29 (0.71)7) | |||||||||||
1) Maximum long-term temperature 2) Maximum short-term temperature 3) The partial safety factors of the resistances regulated in the approval and ETAG 029 and a partial safety factor of the actions of γF = 1.4 have been taken into account. 4) If the characteristic spacing and edge distances are reduced, the admissible loads must also be reduced. The smallest possible spacing or edge distance is the minimum spacing smin or minimum edge distance cmin. 5) For combinations of tensile and shear loads, bending moments or reduced edge distances and spacings, see the European Technical Assessment. If the masonry joints are not visible, the load capacity should be reduced by a factor of αj = 0.75. If the masonry joints are visible (e.g. on an unplastered wall) the following should be observed: 1. The load capacity may only be assessed when the masonry joint is filled with mortar. 2. If the masonry joints are not filled with mortar, the load capacity may only be assessed if the minimum edge distance cmin to the perpend joints has been adhered to. If this minimum edge distance cmin is not adhered to, the load capacity should be reduced by a factor of αj = 0.75. Documentation for brick removal must also be supplied in accordance with ETAG 029 Annex C. 6) The brick and hole geometry must be taken from the European Technical Assessment. 7) Nadm or Vadm applies for the edge distance ccr, clip value (Nadm) or (Vadm) applies for the minimum edge distance (cmin). |
Select RAL-colour code
!! NOTE: On-screen visualisation of the colour differs from real colour shade!!